jueves, 7 de octubre de 2010

PROPIEDADES DE LOS SEGMENTOS RECTILINEOS

Un segmento, en geometría, es un fragmento de recta que está comprendido entre dos puntos.
Así, dados dos puntos A y B, se le llama segmento AB a la intersección de la semirrecta de origen A que contiene al punto B, y la semirrecta de origen B que contiene al punto A. Luego, los puntos A y B se denominan extremos del segmento, y los puntos de la recta a la que pertenece el segmento (recta sostén), serán interiores o exteriores al segmento según pertenezcan o no a este.
Segmento-definicion.png
Segmentos consecutivos
Segmentos consecutivos.
Dos segmento son consecutivos cuando tienen en común solamente un extremo. Según pertenezcan o no a la misma recta, se clasifican en:
  • Colineales
  • No colineales
Los segmentos consecutivos no colineales, llamados poligonal o quebrada, pueden ser abiertos o cerrados según tengan o no extremos comunes el primer y el último segmento que lo forman. 
Un polígono regular es un polígono en el que todos los lados tienen la misma longitud y todos los ángulos interiores son de la misma medida.
Veamos las distintas características de los polígonos regulares, empleando la figura de un Hexágono para representar un polígono regular genérico.
PoliReg 12.svg
Una característica de los polígonos regulares, es que se pueden trazar inscritos en una circunferencia que tocará cada uno de los vértices del polígono. A medida que crece el número de lados de un polígono regular, su apariencia se asemeja cada vez más a la de una circunferencia.
En un polígono regular podemos distinguir:
  • Lado, L: es cada uno de los segmentos que forman el polígono.
  • Vértice, V: el punto de unión de dos lados consecutivos.
  • Centro, C: El punto central equidistante de todos los vértices.
  • Radio, r: el segmento que une el centro del polígono con uno de sus vértices.
  • Apotema, a: segmento perpendicular a un lado, hasta el centro del polígono.
  • Diagonal, d: segmento que une dos vértices no contiguos.
  • Perímetro, P: es la suma de la medida de su contorno.

1 comentario: