jueves, 7 de octubre de 2010

ECUACION DE LA CIRCUNFERENCIA.

Una circunferencia es un conjunto de puntos del plano equidistantes de otro fijo, llamado centro; esta distancia se denomina radio. El segmento de recta formado por dos radios alineados se llama diámetro. Es la mayor distancia posible entre dos puntos que pertenezcan a la circunferencia. La longitud del diámetro es el doble de la longitud del radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.
Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono de infinitos lados, cuya apotema coincide con su radio.
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica .[1] [2] [3] [4] [5]
Es una curva plana con infinitos ejes de simetría y sus aplicaciones son muy numerosas.
Elementos de la circunferencia
Secantes, cuerdas y tangentes.
Existen varios puntos, rectas y segmentos, singulares en la circunferencia:
  • centro, el punto interior equidistante de todos los puntos de la circunferencia;
  • radio, el segmento que une el centro con un punto de la circunferencia;
  • diámetro, el mayor segmento que une dos puntos de la circunferencia, y lógicamente, pasa por el centro;
  • cuerda, el segmento que une dos puntos de la circunferencia; las cuerdas de longitud máxima son los diámetros;
  • recta secante, la que corta a la circunferencia en dos puntos;
  • recta tangente, la que toca a la circunferencia en un sólo punto;
    • punto de tangencia, el de contacto de la tangente con la circunferencia;
  • arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;
  • semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro
Ecuaciones de la circunferencia

[editar] Ecuación en coordenadas cartesianas

Circle center a b radius r.svg
En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (h, k) y radio r consta de todos los puntos (x, y) que satisfacen la ecuación
(x-h)^2 + (y-k)^2 = r^2\,.
Cuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al
x^2 + y^2 = r^2\,.
La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniométrica, circunferencia unidad o circunferencia unitaria.
De la ecuación general de una circunferencia,
(x-h)^2 + (y-k)^2=r^2 \,
se deduce:
x^2+y^2+Dx+Ey+F=0 \,
resultando:
a = \frac{-D}{2}
b = \frac{-E}{2}
r = \sqrt{a^2 + b^2-F}
Si conocemos los puntos extremos de un diámetro: (x_1,y_1), (x_2,y_2)\,,
la ecuación de la circunferencia es:
(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.\,

[editar] Ecuación vectorial de la circunferencia

La circunferencia con centro en el origen y radio R, tiene por ecuación vectorial: \vec r\ =\langle R\cos(\theta),R\sin(\theta)\rangle \, .Donde \theta \, es el parámetro de la curva, además cabe destacar que \theta\in[0,2\pi) . Se puede deducir fácilmente desde la ecuación cartesiana, ya que el componente X y el componente Y, al cuadrado y sumados deben dar por resultado el radio de la circunferencia al cuadrado. En el espacio esta misma ecuación da como resultado un cilindro, dejando el parámetro Z libre.

[editar] Ecuación en coordenadas polares

Unit circle.svg
Cuando la circunferencia tiene centro en el origen y el radio es c, se describe en coordenadas polares como (r,\theta) \,
 r=c. \,
Cuando el centro no está en el origen, sino en el punto (s,\alpha) \, y el radio es c \,, la ecuación se transforma en:
r^2 - 2 s r\, \cos(\theta - \alpha) + s^2 = c^2

[editar] Ecuación en coordenadas paramétricas

La circunferencia con centro en (a, b) y radio c se parametriza con funciones trigonométricas como:
x=a + c \cos t,\ y=b+c\sin t,\qquad t\in[0,2\pi]
y con funciones racionales como
x=a+c\left(\frac{1-t^2}{1+t^2}\right),\ y=b+c\left(\frac{2t}{1+t^2}\right),\qquad -\infty\leq t\leq \infty

No hay comentarios:

Publicar un comentario